
Toward Robust and Extensible Automatic Protocol Identification

George Louthan1, Collin McMillan2, Christopher Johnson1, and John Hale1

1Department of Computer Science, University of Tulsa, Tulsa, OK, USA
2Computer Science Department, College of William and Mary, Williamsburg, VA, USA

Abstract— Conventional network protocol identification
based on well-known port numbers is no longer sufficient to
identify and classify traffic in modern networks. Applications
have developed means by which to dynamically change port
numbers, users select alternate ports, and attackers attempt
to trick identification systems by changing ports. Embracing
the position that correctness should not be sacrificed for
speed, we introduce an architecture for signature-based, fully
stream-aware, automated identification of network protocols,
called SAND, which is capable of classifying TCP traffic
independently of port number with the goal of obtaining the
most demonstrably accurate results possible. The hope is
that this work will foster further efforts to revive research
into intelligent protocol identification and analysis.

Keywords: network monitoring, network protocol identification,
computer networks

1. Introduction
Network monitoring is a vital aspect of network admin-

istration and, notably, enterprise security as well. Clear,
reliable knowledge of the state of a network is essential for
its effective management. Central to the practice of network
monitoring is the identification and subsequent classification
of network protocols. Without a reliable means of classifying
traffic, even the most advanced appliances cannot block or
control it intelligently.

A clear picture of a network is not only useful for security
reasons, but also for quality-of-service concerns. In many
networks, prioritizing traffic is often highly important, but
without a reliable means of classifying that traffic, even
the most advanced appliance cannot prioritize or shape it
intelligently.

Compounding the problem of traffic classification, users
and programs may attempt to evade detection or identifi-
cation, often to malicious ends. Such attempts commonly
exploit the reliance of conventional methods upon well-
known port numbers for protocol classification. For example,
the peer-to-peer Internet telephony software Skype uses
unpredictable port numbers and is capable of remarkably
robust NAT and firewall traversal [1]. Though this is a
desirable feature from the standpoint of the software’s user,
it presents a quandary for network administrators seeking to
monitor, block, or otherwise manage this traffic.

The state of the art in network monitoring has fallen well
behind the needs of modern networks. Because conventional

protocol detection no longer suffices to obtain an accurate
representation of a network, in this paper we present a
solution for the content-based identification of TCP traffic
that is fully stream-aware, capable of identifying TCP traffic
regardless of port number.

The remainder of this paper is structured as follows.
Section 2 presents some background in the field of prot-
col identification, section 3 describes the architecture and
strategy behind our offering, and section 4 provides some
analysis of the results of the system. Finally, in section 5 we
offer some concluding remarks and describe some avenues
for future work.

2. Background
Today, virtually all conventional network monitoring relies

upon classifying packets based on TCP or UDP port num-
bers. This depends on all parties’ adherence to well-known
or standard port conventions and can result in incorrect or
incomplete identification of network traffic.

A typical example of conventional network monitoring is
found in Wireshark, a packet sniffer and protocol analyzer.
Wireshark performs protocol identification by examining
each packet’s header and matching the port number with
well-known ports for applications and protocols. Once this
determination is made, the packet is dissected according to
analysis plug-ins applied based upon the port number [2].

Although Wireshark contains sophisticated tools for an-
alyzing and dissecting the payloads of packets, as well as
for the analysis of streams, its inability to identify packets
based upon the specifications driving those dissectors is a
serious drawback. Unfortunately, these protocol analyzers
are essentially useless without an initial identification of the
protocol.

A demonstration of this failing is illustrated in Fig. 1.
In an admittedly contrived (but still valid) example, a web
server was configured to bind to port 22, and the traffic
between it and a web browser was recorded and analyzed
with Wireshark. Wireshark identified the packet as part of an
encrypted SSH stream based upon port number. However, to
a knowledgeable human observer, the contents of the well-
formed HTTP packet would be sufficient for identification.

A new method of traffic classification, capable of reliably
identifying application traffic regardless of port number,
is needed if network monitoring is to keep pace with its
challenges. Furthermore, we believe that for robustness such



Fig. 1: Wireshark incorrectly identifying HTTP over port 22.

a system must be content-aware, making its identifications
based upon the actual content of packets that adhere to
known, fixed protocol formats. The goal, then, is to leverage
in an automated fashion the same data that a human might
use to conclude that the example in Fig. 1 is flawed.

Previous work in signature-based protocol identification
by Moore and Papagiannaki suggested a 9-layer methodol-
ogy for identification, but they lacked an automated process
for executing their method [5]. Sen, et al., specified an on-
line, automated method for identifying certain specific peer-
to-peer protocols. However, their method was not extended
beyond peer-to-peer applications, relied upon specialized
hardware, and only inspected traffic on a packet-by-packet
basis [7].

A free and open source tool called l7filter, a regular-
expression based classifier plugin for Netfilter (the Linux
packet filtering framework), has achieved a reasonably high
level of maturity. However, it effects only rudimentary
stream reconstruction by examining, by default, the first 10
packets of a stream, and it is explicitly intended almost
exclusively for QoS [4]. It is expected that an attacker could
use creative TCP segmentation or other tricks to evade it.

While the body of preceding work has largely sacrificed
full TCP stream reassembly in order to obtain higher speeds,
making their systems unsuitable as the basis vital security
decisions, we have set the specific goal of maximizing the
correctness of classification through robust stream reassem-
bly in spite of its overhead. Therefore, in this paper we
present a general, automated, self-contained solution for the
passive, signature-based identification of TCP-based network
protocols using only commodity hardware.

Additionally, although a significant amount of work was
done in the field of alternative methods for identifying
network traffic several years ago, little has been done since,
even though the problem has only gotten more severe. For
that reason, a second goal of this paper is to encourage a
revival of work in this field and to advocate for the necessity

of a new approach to protocol identification.

3. SAND: An Architecture for
Signature-based Automatic Network
Detection

A solution to the problem of traffic identification needs
to fulfill several properties. Speed and extensibility are
important, but quality of results are paramount for a system
that is to form the basis for making security decisions. That
is, it should be fully stream-aware and automated; without
satisfying these requirements, an identification system is
likely to fall short in robustness and usability, which together
are necessary to succeed conventional methods.

Our architecture, dubbed SAND, for Stream-Aware
Network-protocol Detector, takes great strides toward ex-
hibiting these properties for detection of TCP-based proto-
cols. The implementation, written largely in Python, provides
a module called pysand, suitable for import and use by other
applications. The following section describes the general ar-
chitecture and some implementation details of our detection
library.

3.1 Architecture
Fig. 2 shows the basic architecture of the SAND system,

which relies upon three basic, modular components: an
identification moduSSH is not the only protocol taking
this approximate form. For example, in the GNUTELLA
protocol, an early version used “GNUTELLA OK” as a
server response from a client request. In later versions
of the protocol, 0.6 for instance, the response might be
“GNUTELLA/0.6 200 OK” [10]. This form, combined with
the nature of SAND identifiers, enables the system to deal
gracefully with different versions, as well as pass the version
(and status code, if desired) back to an analysis module.le
(pysand in our reference implementation), which performs
the actual protocol detection; one or more analysis modules,



Fig. 2: The SAND architecture.

which receive protocol information from callback functions
they provide to the library; and a set of protocol identifiers,
used to specify signatures in order to identify and extract
some basic information from the network streams.

Discrete packets are reassembled into a completely cor-
rect, consistent stream using libnids, a library providing
supporting functions for the design of network intrusion
detection systems that actually provides an implementation
of the Linux TCP/IP stack and provides the interface to
libpcap [8].

3.2 Identification Strategy
The identification strategy depends upon a set of identi-

fiers loaded from files at run-time. A single identifier spec-
ifies the information necessary to identify a single protocol
and is made up of one or more signatures to be located in
the streams.

A single signature in an identifier includes start and end
terms, with the unsearched string between them optionally
being returned to libsand as potentially useful information.
For example, in the SSH protocol, each party must send a
protocol identification string of the form “SSH-protoversion-
softwareversion SP comments CR LF” [9]; therefore, a
sensible identifier for the SSH protocol might find the
string “SSH-” and the “CR LF” terminator, taking the string
between them to be the protocol version. This identifier is
provided in SAND format in Fig. 3.

SSH is not the only protocol taking this approximate form.
For example, in the GNUTELLA protocol, an early version
used “GNUTELLA OK” as a server response from a client
request. In later versions of the protocol, 0.6 for instance,
the response might be “GNUTELLA/0.6 200 OK” [10].
This form, combined with the nature of SAND identifiers,
enables the system to deal gracefully with different versions,
as well as pass the version (and status code, if desired) back

protocol = “SSH”
threshold = 2

[server0]
start = “SSH-”
sig = “s_version”
finish = “\n”

[client0]
start = “SSH-”
sig = “c_version”
finish = “\n”

Fig. 3: The identifier for SSH.

to an analysis module.
Like Sen, et al., we noted that protocols often take the

form of “stringset1*stringset2” [7]. This identifier for-
mat was favored over simpler techniques like plain string
matching or string and offset specification, because more
power was judged to be useful; and over full-fledged regular
expression based string specification system, like what is
used in l7filter [4] because the extra complexity was
judged unnecessary. Further, the variable content between
the two strings is often version information or other desirable
content.

Fig. 4 illustrates the general strategy for identifying a
stream. Pysand maintains a table of each tracked stream
and the protocols they have been matched against, storing
a numerical “certainty” value. Each time a signature is
matched in the stream, the certainty value is incremented;
once it reaches an identifier’s specified threshold, stream
searching and reassembly cease, and the analysis module
is notified of the identification.

4. Analysis
Above, several criteria and requirements are identified

against which SAND and other signature-based attempts to
solve the protocol identification problem should be evalu-
ated. These included signature-based nature, stream-based
processing, extensible architecture, automation, and speed.

SAND identifies protocols according to signatures speci-
fied in identifier files. The search system allows the location
of arbitrary signatures at arbitrary locations in TCP streams
and the parsing of simple information such as version strings
based upon specifications made in the identifiers.

While many protocol identification systems, including
those is most common use, operate on individual packets
(whether on packet headers alone or on their payloads),
SAND is fully stream-based. By utilizing an actual im-
plementation of a TCP/IP stack, the system can robustly
reassemble packets into streams; this should prove more re-
liable than any system that depends upon single independent
packets.



Fig. 4: The SAND identification strategy.

As an example, Sen, et al., specifically chose to avoid
stream reassembly, asserting that the speed gained by es-
chewing reassembly outweighed potential gains in robust-
ness [7]. However, most identifiable streams can be iden-
tified in the first few packets, seriously limiting and, in
some cases, altogether eliminating the amount of extraneous
reassembly required.

For example, an attacker seeking to avoid detection by a
packet-based system could use TCP segmentation to con-
struct packets that do not contain signatures but still deliver
equivalent information by altering the size of each packet
to ensure that the packet boundary falls in the middle of a
signature element, and possibly reordering the packets. The
stream reassembly component of SAND ensures that such
efforts will fail.

Several other researchers have presented methods of iden-
tifying traffic using signatures without providing a clear
method for updating, specifying, and extending their sys-
tems’ ability to recognize different streams from the perspec-
tive of a user [5] [12] [7]. In the SAND implementation, a
simple, well-defined data file added to the identifier directory
introduces a new identifier.

A minor roadblock to extensibility is the requirement
for the manual generation of network protocol identifiers.

Most common protocols are well studied and well specified,
leading to straightforward design of signatures. For other
protocols, work has been done to alleviate this problem.
Park, et al., created an algorithm called LASER, which
seeks to automatically generate application signatures [6].
Although SAND’s approach to protocol identification is fully
automated, the system itself does not provide any useful
method for automatically generating identifiers.

This flows naturally into the question of automation.
SAND’s approach to protocol identification is fully auto-
mated; however, the system itself does not provide any useful
method for automatically generating identifiers. Although
this issue is out of the scope of this paper, we recognize
that it is a serious deficiency that needs to be addressed.

The last issue is speed. Pattern matching in pysand is
accomplished using Python’s built-in substring finding func-
tion, which is, in Python 2.5, implemented as a variation
of the Boyer-Moore algorithm and exhibits sublinear order
(O(n/m)) in good cases and no worse than O(nm). In
practice, it works quite quickly. An even faster alternative to
this might incorporate a Bloom filter, a probabilistic data
structure capable of quickly determining set membership
with the risk of false positives but incapable of producing
false negatives [11], if the risk of false positives is judged
acceptable.

Another speed concern is the overhead inherent in using
libnids, which contains a full implementation of the Linux
TCP/IP stack. Using libnids allows graceful handling of
boundary cases that may confound other systems but perhaps
introduces an overly large amount of overhead. Nevertheless,
the graceful treatment of these boundary cases—and, in fact,
all possible cases involved in TCP reconstruction—is one of
the properties setting SAND apart from other systems.

Nevertheless, the speed of the system seems acceptable
for many purposes. In a number of preliminary tests, rates
between 30Mbps and 220Mbps were achieved on a mod-
erately loaded AMD Athlon 64 X2 5000+ Linux system
with 2GB of RAM. Various protocols and identifiers were
included in these tests, the selection of which is expected to
influence the performance of the system. Performance data
and analysis is incomplete and likely to be the subject of
future work.

A final set of examples of the advantages of the SAND
approach over conventional TCP port-based identification
schemes is illustrated by elaborating on an earlier compar-
ison to Wireshark’s identification abilities. An SSH server
was configured to bind to port 5322, an instance of an
alternate-port configuration suggested by some commercial
web hosts, a web server was bound to port 22, and Wireshark
was used to sniff the traffic to those servers.

In default configurations, Wireshark can immediately
identify traffic on port 22 as SSH and on port 80 as HTTP;
however, in this case Wireshark identified the SSH traffic
on port 5322 only as “TCP”, whereas it identified the web



traffic on port 22 as SSH (Fig. 1). SAND, on the other hand,
identified both connections after viewing 5 and 6 packets,
respectively: that is, the three-way TCP handshake followed
by the first few packets of each protocol’s connection.

This striking, though manufactured, example stands by
itself as an excellent argument for the usefulness of—and,
in fact, need for—an alternate means of identifying traffic.

5. Conclusions and Future Work
This paper presents a new signature-based approach to the

identification of protocols operating on TCP streams, dubbed
SAND. Furthermore, it describes our reference implementa-
tion and its advantages and limitations. SAND is a signature-
based solution for identifying protocols operating on TCP,
performing full packet reassembly using libnids’ reimple-
mentation of the Linux TCP/IP stack. SAND operates on
complete streams of traffic identifying protocols using sets
of signatures.

This paper has hinted at directions for future work in this
field. Specifically, a survey of real-world traffic, including
attacks against similar systems, would prove valuable in
confirming or refuting the need for the highly robust stream
reassembly we implement.

The speed and performance of the system also needs to
be analyzed in detail. The exact performance consequences
of properties of the identifier (such as number and length
of signatures) should be weighed alongside the properties of
the traffic. Detailed results in that area will allow realistic
judgments to be made about the feasability of deploying a
fully stream-based network device in a real network.

If proven necessary, the performance of a conventional
string-searching algorithm could be augmented by including
an alternate string testing system; this approach is worth
examining. For example, Dharmapurikar, et al. successfully
utilized Bloom filters to improve performance in signature-
matching field-programmable gate arrays [3].

We also intend to integrate SAND with network control
systems; initially, we expect a sensible configuration to
examine would be to augment port-based firewalling with

content-based protocol confirmation, to more finely tune a
firewall’s rules or simply for quality of service decisions.

A SAND-like approach for UDP protocol detection needs
to be developed; this has been less well-studied than TCP
identification. Clearly a stream-based approach is inviable
for a connectionless protocol like UDP; some useful substi-
tute needs to be examined.

Finally, a word about the future of network protocol
identification in general is warranted. This paper proposes
and advocates for a new approach to identifying network
protocols. It is our hope that reviving discussion of this
necessary study will stimulate further work in the field,
because the problem is only worsening, as protocols such as
Skype and BitTorrent, which violate the basic assumptions
that enable port-based identification to work, proliferate even
further.

References
[1] S.A. Baset and H. Schulzrinne. An Analysis of the Skype Peer-to-Peer

Internel Telephony Protocol. Arxiv preprint cs.NI/0412017, 2004.
[2] G. Combs et al. Wireshark, 2008.

http://www.wireshark.org/about.html.
[3] S. Dharmapurikar, P. Krishnamurthy, T.S. Sproull, and J.W. Lockwood.

Deep Packet Inspection using Parallel Bloom Filters. 2004.
[4] J. Levandoski, E. Sommer, and M. Strait. Ap-

plication Layer Packet Classifier for Linux. 2008.
http://l7-filter.sourceforge.net/.

[5] A. Moore and K. Papagiannaki. Toward the Accurate Identification of
Network Applications. PAM, March 2005.

[6] B.C. Park, Y.J. Won, M.S. Kim, and J.W. Hong. Towards Automated
Application Signature Generation for Traffic Identification.

[7] S. Sen, O. Spatscheck, and D. Wang. Accurate, scalable in-network
identification of p2p traffic using application signatures. Proceedings of
the 13th international conference on World Wide Web, pages 512–521,
2004.

[8] R. Wojtczuk. Libnids, 2008. http://libnids.sourceforge.net/.
[9] T. Ylonen and C. Lonvick. The Secure Shell (SSH) Transport Layer

Protocol. Technical report, RFC 4253, January 2006.
[10] S. Ertel. Unstructured P2P networks by example: Gnutella 0.4,

Gnutella 0.6.
[11] A. Broder and M. Mitzenmacher. Network Applications of Bloom

Filters: A Survey. Internet Mathematics, 1(4):485–509, 2004.
[12] Y.J. Won, B.C. Park, H.T. Ju, M.S. Kim, and J.W. Hong. A Hybrid

Approach for Accurate Application Traffic Identification. End-to-End
Monitoring Techniques and Services, 2006 4th IEEE/IFIP Workshop
on, pages 1–8, 2006.


